Low-Cost, Portable Pneumonia Diagnostic Device

By: Clark Ingram Group Members: Sheun Aluko and Lauren Bedell Mentor/Client: Professor Dan Moran 10/29/13

Need/Project Scope

- Need
 - Pneumonia is a major cause of death in developing countries
 - Early diagnosis is key for improved patient outcomes
- Project Scope
 - To develop a low-cost, non-invasive, portable device that can diagnose pneumonia

Specific Design Requirements

Accurate

False Positive Rate < 10% False Negative Rate < 10% Inexpensive

Total cost < \$150

High throughput

Measurement time < 30 seconds Diagnostic time < 1 minute

Safe

No pathogen exposure Non-invasive Portable Mass < 0.5 kg Volume < 1L Easily Operated Does not require a trained technician

Overview of Design Alternatives

- The design alternatives were divided into 3 categories:
 - Chemical Methods
 - Electromagnetic Methods
 - Acoustic Methods

12 designs were generated and evaluated

Specification:	Weight:	Sputum Test:	Blood Test:	Pleural Fluid Analysis:	Bronch- oecopy:	Portable X-ray:	Pulse Oximetry:	Optical Coherence:	Electrical Impedance:	Cough Sound:	Chest Sound:	Tracheal Sound:	Ultrasound:
Portable	2	0	0	0	4	0	5	4	2	4	5	5	3
Substantial Operation Time	1	5	5	5	4	1	3	4	1	5	5	5	3
High Throughput	1	1	1	1	1	3	4	1	2	4	4	4	3
Reliable: Durable	1	4	4	4	4	3	4	2	1	4	4	4	5
Reliable: Accurate	3	1	2	1	1	5	1	1	1	4	3	4	3
Easily Operated	2	1	1	1	0	0	4	0	2	4	4	5	0
Safe	3	5	3	2	4	1	5	4	3	1	5	5	4
Inexpensive	2	2	2	2	2	0	5	1	2	5	5	5	3
Non weighted score		19	18	16	20	13	31	17	14	31	35	37	24
Weighted Score		34	31	25	36	25	57	32	28	54	65	70	44
Normalized Weighted Score		0.45	0.41	0.33	0.48	0.33	0.76	0.43	0.37	0.72	0.87	0.93	0.59

Electromagnetic Method: Pulse Oximetry

Measures SpO₂ based on absorption differences of red and infrared light in blood

Pros:

- Low-cost and easily operated
- Can distinguish between pneumonia and nonrespiratory illnesses
- Cons: Accuracy
 - Cannot easily distinguish pneumonia and other acute respiratory illnesses (ARI's)
- Healthy SpO_2 : 98.73% ± 1.51%
- Other ARI SpO₂: 94.97% ± 2.70%
- Pneumonia SpO₂: 92.32% ± 3.83%

Madico et al.

www.staples.com

Acoustic Method: Cough Sound Analysis

FIGURE 3. Typical waveforms of cough sounds in (a) pneumonia, (b) asthma, (e) bronchitis and (f) bronchiolitis. Their frequency spectrograms are shown respectively in (c), (d), (g) and (h).

Patient coughs would be recorded in a microphone
Key features from amplitude plot and spectogram would be extracted and used for diagnosis
Pros:

Low-cost, easy method to extract key features

- 94% sensitivity and 75% specificity
- Cons: Safety
- Device and user directly exposed to pathogens

Abeyratne, et al.

Acoustic Method: Chest Sound Analysis

 Conductive diaphragm would be enclosed in "puck" shaped housing and placed on chest

 Key features would be extracted and used for diagnosis

• Pros:

- Low-cost, easy method to extract key features
- 78% sensitivity and 88% specificity
- Cons: Accuracy
- Lung tissues in the chest act as low-pass filter (attenuates key features)

http://thoracicsurgery.stanford.edu/

Murphy

Chosen Design: Tracheal Sound Analysis

American Accreditation HealthCare Commission

Acoustic Method: Tracheal Sound Analysis

- Sensor would consist of diaphragm, air-coupled chamber, and microphone
- Key features would be extracted and used for diagnosis
- Pros:
- Low-cost, easy method to extract key features
- 72% sensitivity and 82% specificity
- Low variability between subjects
- Cons:

Morillo et al.

 Paper did not analyze differences between healthy patients and patients with pneumonia

Improvements to Morillo Paper

- Make a portable, classification device that does not require a computer or mains power
- Analyze differences in key features between patients with and without pneumonia
- Improve sensitivity and specificity to over 90%

Tracheal Sound Analysis: Feature Extraction

- Mean frequency
- RP in the 50-200 Hz band
- Vesicular sounds: normal breath sound
- RP in the 200-400 Hz band
- Wheezing sounds
- RP in the 400-800 Hz band
- Fine crackles
- RP in the 800-2000 Hz band
- High turbulence through trachea

Tracheal Sound Analysis: Classification

 Pneumonia will be diagnosed using an artificial neural network

 Key parameters will be inputs, and the neurons will update weights as learning occurs

Acknowledgements

- Professor Joe Klaesner
- Rebecca Gilson
- Professor Dan Moran

References

- www.staples.com
- Madico, Guillermo, et al. "The role of pulse oximetry: its use as an indicator of severe respiratory disease in Peruvian children living at sea level." *Archives of pediatrics & adolescent medicine* 149.11 (1995): 1259-1263.
- Abeyratne, Udantha R., Vinayak Swarnkar, Amalia Setyati, and Rina Triasih. "Cough Sound
- Analysis Can Rapidly Diagnose Childhood Pneumonia." Annals of Biomedical Engineering 41.11 (2013): 2448-462. Web.
- Murphy, Raymond. "Respiratory Care." *Automated Lung Sound Analysis in Patients With Pneumonia*. Washington University School of Medicine. Web. 23 Oct. 2014.
- American Accreditation HealthCare Commission
- Morillo, D. Sanchez, A. Leon Jimenez, and S. A. Moreno. "Computer-aided Diagnosis of Pneumonia in Patients with Chronic Obstructive Pulmonary Disease." *Journal of the American Medical Informatics Association* 20.E1 (2013): E111-117. Web.

Questions?