Low-Cost, Portable, Pneumonia Diagnostic Device

Lauren Bedell

Team Members: Shay Aluko and Clark Ingram Mentor: Dr. Dan Moran

Global Prevalence of Pneumonia

<100 100-700 700-1400 1400-2100 2100-2800 2800-3500 3500-4200 4200-4900 4900-5600 5600-6300 6300-7000 >7000

References:

World Health Organization. "Pneumonia."; World Health Organization "The top 10 causes of death"; http://www.who.int/mediacentre/factsheets/fs310/en/index4.html

Pneumonia Overview

- * Inflammation of pulmonary alveoli
- * Obstruction of oxygen exchange
- Impacts cellular function and infection can spread
- * Individuals at risk
 - * Compromised immune system
 - Infants and elderly
 - Environmental factors
- * 3 most common symptoms
 - Cough with discharge
 - * Fever
 - Difficulty breathing

3 Mason: Murray and Nadel's Textbook of Respiratory Medicine: "Bacterial Pneumonia National Health Service. "Pneumonia" http://www.nhs.uk/conditions/Pneumonia/Pages/Introduction.aspx Mayo Clinic Staff. "Pneumonia" : http://www.mayoclinic.org/diseases-conditions/pneumonia/basics/definition/con-20020032

References:

Classification of Pneumonia:

References:

http://www.nhs.uk/conditions/Pneumonia/Pages/Introduction.aspx; Encyclopedia of Infectious Diseases: "Pneumonia"; National Center for Immunization and Respiratory Diseases: "Atypical Pneumonia"; www.mayoclinic.org/diseases-conditions/pneumonia/basics/definition/con-20020032

Diagnosis and Treatment

* Diagnosis

- Medical history and recording of symptoms
- Recording of patient temperature
- Listening to chest of individual for abnormalities
- Additional diagnostic tests
- * Treatment
 - * Antibiotics
 - * Fever reducers or cough medicine
 - More severe forms: hospitalization with fluid drainage

References:

5

http://www.nhs.uk/conditions/Pneumonia/Pages/Introduction.aspx; www.mayoclinic.org/diseases-conditions/pneumonia/basics/definition/con-20020032 http://www.nhlbi.nih.gov/health/health-topics/topics/pnu/diagnosis.html

Exploration of Existing Solutions

Portable X-Ray Device: MinXRay

- MinXray's CMDR-2S is an integrated device used for direct radiography in remote locations.
- * Advantages
 - * Portable, durable
 - * Wireless capabilities
 - * 6-8s image acquisition

* Disadvantages

- * Technician required for operation and interpretation
- * 149 lbs

Point-of-Care Ultrasound

 * Point-of-care ultrasound refers to use of portable ultrasonography for diagnostic purposes.

* Advantages

- * Portable
- * Relatively inexpensive
- * Disadvantages
 - Previous training required for interpretation
 - * Interpretation of results varies

References:

8

http://www.amazon.com/Draminski-SonoFarm-Portable-Ultrasound-Scanner/dp/BooJ9O9Z4K/ref%3Dsr_1_5?ie=UTF8&qid=1410641542&sr=8-5&keywords=portable+ultrasound http://www.amazon.com/Zenith-Medical-Supplies-Hand-Held-Ultrasound/dp/BooHCQUY56/ref%3Dsr_1_1?ie=UTF8&qid=1410641544&sr=8-1&keywords=portable+ultrasound

Inspire: Respiratory Rate Monitor

 Pediatric device used to measure respiratory rates through breath recognition for Pneumonia diagnosis

* Advantages

- * High usability
- * Transmit Data
- Durable for use in harsh conditions
- * Fast Results

* Disadvantages

* Limited to Children

References:

Smart-phone Powered Oximeter

- This oximeter uses LEDs and photo resistors to obtain absorbance information (based on percentage of hemoglobin in the blood) which is then analyzed on a mobile application.
- * Advantages
 - * Inexpensive
 - * Portable
- * Disadvantages
 - * Requires smartphone for operation

http://research.microsoft.com/en-us/collaboration/focus/health/smartphone_clinical_diagnosis.aspx

Automatic Analyzer of Lung Sounds

 Utilizes software to analyze lung sounds and diagnose respiratory illnesses, especially child pneumonia.

* Advantages

- * Noninvasive
- * High usability
- * Expertise not required
- * Disadvantages
 - * Requires access to a computer
 - * Focus on childhood pneumonia

🎊 STG_LungS_Pneumonia 🔩 2:14 🛛 😵)						
14.948 15.448 15.948 16.448 16.948	s						
Count over 20 seconds:	-						
0.3 fine crackles per second							
4.0 coarse crackles per second							
0 % wheeze/rhonchi							
	-						
	3						
	22						
Vertical zoom:100% t1=14.177s							
◀)							
Q Q AII 🖻 🔁 🧡 👧 😵 Q Q							
File Tools 🔹 🔚 🕨 🧲 🔳 🔤 🍝							

Cough Sound Analysis

 Researchers have developed a method of diagnosing pneumonia through cough sound analysis (which provides vital diagnostic information).

* Advantages

- * High accuracy of diagnosis
 - * Sensitivity: 94%
 - * Specificity: 75%
- * Inexpensive and noninvasive

* Disadvantages

* Not yet implemented

References:

Need and Project Scope

Design Specifications

Design Calculations

Device Sturdiness : (2m Drop Test)

Potential Energy = m * g * h

Conservation of Energy :
$$m * g * h = \frac{1}{2} * m * v^2$$

$$v = \sqrt{2 * g * h} = \sqrt{2 * 9.81 \left(\frac{m}{s^2}\right) * 2m} = 6.26 \frac{m}{s}$$

Momentum =
$$m * v = 0.5kg * 6.26\frac{m}{s} = 3.13\frac{kg * m}{s}$$

Impulse(Change in Momentum) = Impact Force * Time to Stop

$$\therefore Impact Force = \frac{3.13 \frac{kg * m}{s}}{0.01s} = 313N$$

Design Calculations

Device Toxicity:

* Specification calculation to ensure device is less toxic than an xray scan (used commonly as a diagnostic test).

Total Effective Dose :

 $= 0.1 \frac{mSv}{scan} * 5 \frac{scan}{exam} * \frac{1 exam}{year} = \frac{0.5 mSv}{year}$ for the patient

Increase the patient's cancer risk by 0.005%

$$Total \ Effective \ Dose : = \left(0.1 \ \frac{mSv}{scan} * 5 \ \frac{scan}{exam} * \frac{20 \ exam}{day} * \frac{365day}{year}\right) * 1\% = \frac{36.5 \ mSv}{year} \ for \ the \ user$$

Increase the user's cancer risk by 0.37% /year

Design Schedule

	Aug 24	Aug 31	Sep 7	Sep 14	Sep 21	Sep 28	Oct 5	Oct 12
Mentor Agreement								
Project Idea Brainstorming								
Project Scope			9/8					
Development of Design Specifications								
Background Research/Need Recognition								
Existing Solutions Search								
Preliminary Written Report				9/19				
Preliminary Oral Report				9/22				
Webpage Operational							10/6	
Risk Analysis/DesignSafe							10/8	
Concept Generation								
Pugh Chart Analysis/Concept Selection								
Progress Written Report								

Past WorkPast DeadlineFuture WorkFuture Deadline

Design Schedule

	Oct 19	Oct 26	Nov 2	Nov 9	Nov 16	Nov 23	Nov 30	Dec 7
Decision Matrix/Concept Screening								
Progress Written Report	10/24							
Progress Oral Report		10/27						
Concept Embodiment								
Design Optimization Research								
Design of Software Involved								
Selection of Hardware Components								
Peer Review Due					11/19			
Final Written Report							12/1	
Final Oral Report							12/3	
Poster Competition								12/9

Past Work Past Deadline Future Work Future Deadline

Team Responsibilities

- Biological signal acquisition
 - Biological signal acquisition

Shay

Clark

- Transmission of biological signal for processing
 - Digital processing of the signal
- Symptom recognition for diagnosis

Acknowledgements

* Team Members:

- * Shay Aluko
- * Clark Ingram
- * Mentor: Dr. Dan Moran
- * Professor: Dr. Joseph Klaesner
- * **TA:** Rebecca Gilson

Questions?

Direct Sputum Detection Kit

 This highly sensitive immunochromatography test kit uses antibodies against streptococcus pneumoniae to detect Pneumonia in adults.

* Pros

- * Sensitivity 94.4%
- * Specificity 88.2%
- * Portable

* Cons

 Only identifies bacterial pneumonia caused by S. pneumoniae

References:

http://jmm.sgmjournals.org/content/57/7/820/F1.expansion.html

Mycoplasma Pneumonia Detection Kit

- This kit uses a loop-mediated isothermal amplification process to detect the presence of a particular bacterial strain indicative of pneumonia.
- * Pros
 - * Accurate
 - * Simple to operate
- * Cons

References:

- Limited to Mycoplasma
 Pneumonia
- Requires 1 hour at a given incubation temperature

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Pulse Oximetry, pH Levels, and CO2 Levels

- This device uses a venous blood sample and pulse oximetry to diagnose and detect pneumonia through a blood gas test.
- * Pros
 - * Reliable
 - * Rapid results
- * Cons
 - * Requires a blood sample

рΗ	[HCO ₃]	PCO ₂	Condition	Common Causes
≤ 7.4	Low	Low	Metabolic acidosis	Kidney failure, shock, diabetic ketoacidosis
≥ 7.4	High	High	Metabolic alkalosis	Chronic vomiting, low blood potassium
≤ 7.4	High	High	Respiratory acidosis	Lung diseases, including pneumonia or COPD
≥ 7.4	Low	Low	Respiratory alkalosis	Breathing too fast, pain or anxiety

References: http://www.google.com/patents/US7662632 http://www.healthline.com/health/blood-gases#Results4